OCS Technical Manual

Content

1. USER INPUT	3
KEYS ON SCALE	3
KEYS ON REMOTE CONTROLLER	3
2. ADVANCED OPERATION	4
SCALE CONFIGURATION	4
AUTO-ZERO RANGE	5
MANUAL-ZERO RANGE	5
ZERO-TRACKING RANGE	5
GRAVITY ACCELERATION	6
USER-DEFINED UNIT	6
CALIBRATION	7
System Unit	9
MAXIMUM CAPACITY	9
ZERO WEIGHT CALIBRATION	10
ONE LOAD CALIBRATION	10
TWO LOADS CALIBRATION	11
THREE LOADS CALIBRATION	12
POWER ADJUSTMENT	13
3. RS-232 COMMUNICATION	15
COMMUNICATION WAYS	15
RS-232 PROTOCOL	15
4. MESSAGE ILLUSTRATION	18
5. NOTES	19

1. User Input

In this section, you will learn how to operate this scale in a convenient way either on scale or by remote controller.

KEYS ON SCALE

	ON/OFF	ZERO	TARE	HOLD	2ND
Scale Configuration	Exit	1	\uparrow	Confirm	Save
Calibration	Exit	1	\rightarrow	Confirm	Save
Power Adjustment	Exit	1	\rightarrow	Confirm	
System Info	Exit			Confirm	

KEYS ON REMOTE CONTROLLER

	Scale Configuration	Calibration	Power Adjustment	System Info
	1	1	1	
	\rightarrow	\rightarrow	\rightarrow	
	Confirm	Confirm	Confirm	Confirm
	Ļ	Ļ	Ļ	
	←	←	←	
F1				
F2				
	Exit	Exit	Exit	Exit
	Save	Save		

2. Advanced Operation

Operations in this section feature versatile and powerful functions for crane scale measurement. Most of the operations are accessible via dedicated remote controller. Some of the settings to the scale require password. Please contact your local representatives for password information.

SCALE CONFIGURATION

Action

Before entering SCALE CONFIGURATION MODE, press 2ND button on scale or **r** on remote controller twice to enter the password interface first.

To input SCALE CONFIGURATION password or digits, press ZERO and TARE button on scale or **and on remote** controller.

To confirm the password or input value, press HOLD button on scale or **I** on remote controller.

To save and exit SCALE CONFIGURATION MODE, press 2ND button on scale for **T** on remote controller.

To exit SCALE CONFIGURATION MODE without saving, press ON/OFF button on scale or 😈 on remote controller.

To learn how to input digits or change the option, please refer to 1 User Input section in User's Guide.

Function

In SCALE CONFIGURATION MODE, user can change the scale's metrology performance, like system measurement unit, auto and manual zero, automatic zero-tracking, anti-motion algorithm, and gravidity acceleration, etc.

The screen displays the welcome message as below.

WARNING:

Parameters in SCALE CONFIGURATION are closely related to scale's metrology performance. It is NOT recommended to change anything in SCALE CONFIGURATION unless you are authorized from your local representative with the correct password.

Condition

\checkmark	The scale	must not be in HOLD mode. Otherwise, error
	message	hold will keep flashing.

AUTO-ZERO RANGE

During the power-on procedure, load on scale will be automatically zeroed if the load's weight is in **AUTO-ZERO RANGE**.

There are optional 6 **AUTO-ZERO RANGE**, "0%, "2%", "4%", "10%", "20%", and "100%" Max. Cap.. When **AUTO-ZERO RANGE** is "0%" Max. Cap., the **AUTO-ZERO** function is disabled.

The default AUTO-ZERO RANGE is set to "20%" Max. Cap..

MANUAL-ZERO RANGE

After powered on, the scale can be zeroed manually (by pressing ZERO button on scale or **on** remote controller), if the load's weight is in **MANUAL-ZERO RANGE**.

There are optional 6 MANUAL -ZERO RANGE, "0%, "2%", "4%", "10%", "20%", and "100%" Max. Cap.. When MANUAL -ZERO RANGE is "0%" Max. Cap., the MANUAL -ZERO function is disabled.

The default MANUAL -ZERO RANGE is set to "4%" Max. Cap..

ZERO-TRACKING RANGE

ZERO-TRACKING function zeros the scale when weight reading is in ZERO-TRACKING RANGE.

There are optional 6 **ZERO-TRACKING RANGE**, 0.0 division, 0.5 division, 1.0 division, 1.5 division, 2.0 division, and 2.5 division, respectively "0E", "0.5E", "1.0E", "1.5E", "2.0E", and "2.5E". When **ZERO-TRACKING RANGE** is "0.0E", the **ZERO-TRACKING** function is disabled.

The default **ZERO-TRACKING RANGE** is set to 0.5 division, namely, "0.5E".

NOTICE:

Enabling Zero-Tracking will enhance temperature and drift performance of the scale

GRAVITY ACCELERATION

Adjust the **GRAVITY ACCELERATION**, only when you use the scale in a place where acceleration of gravity is greatly different from the place where the scale is calibrated.

GRAVITY ACCELERATION can be set from "9.700" to "9.899". The default **GRAVITY ACCELERATION** is set to "9.794".

USER-DEFINED UNIT

The scale allows user to define a special unit as USER-DEFINED UNIT.

USER-DEFINED UNIT can be set from "0.000" to "9.999". The default USER-DEFINED UNIT is set to "1.000".

NOTICE:

A USER-DEFINED UNIT is a named unit which is usually used in user's region, but not included in the scale by default, like kg, lb, etc. It is a ratio to the SYSTEM UNIT.

For example, if USER-DEFINED UNIT is set to 1.234 when SYSTEM UNIT is kg, then after switching to USER-DEFINED UNIT, scale calculates the weight (1000 kg), and displays the calculated value (1234 user-defined unit).

After pressing 2ND button on scale or **T** on remote controller, scale will save current settings, exit the **SCALE**

CONFIGURATION MODE automatically and returns to WEIGHING MODE.

CALIBRATION

Action

Before entering **CALIBRATION MODE**, press 2ND button on scale or **T** on remote controller twice to enter the password interface first.

To input **CALIBRATION** password or digits, press ZERO and TARE button on scale or **and b** on remote controller.

To confirm the password or input value, press HOLD button on scale or **I** on remote controller.

To save and exit **CALIBRATION MODE**, press 2ND button on scale for **T** on remote controller.

To learn how to input digits or change the option, please refer to 1 User Input section in User's Guide.

NOTICE:

To meet metrology government's requirement in some of the European countries, the scale is protected against user calibration with calibration plug. In this version's scale, user must take off the front panel and change the position of the calibration plug. See below picture.

Error message <u>PL</u> will fresh, indicating that there is no plug on required position. After calibration, put the plug back onto its original pin.

Function

When the scale needs to be re-calibrated, user can recalibrate the scale in **CALIBRATION MODE**.

The screen displays the welcome message as below.

WARNING:

It is NOT recommended to do the CALIBRATION unless you are authorized from your local representative with the correct password.

Condition

\checkmark	The scale	must not b	e in HOLD mode. Otherwise, error
	message	hold	will keep flashing.

SYSTEM UNIT

In contrast to the **DISPLAY UNIT**, the **SYSTEM UNIT** is set before it leaves factory. To be more exact, it is set when the scale is calibrated at factory.

A metric scale's **SYSTEM UNIT** is kg by default, while an imperial scale's **SYSTEM UNIT** is lb by default.

To switch between metric and imperial system, please flip to the Display Unit Switch part.

MAXIMUM CAPACITY

Action

To set the scale's **MAXIMUM CAPACITY**, input the capacity in unit "ton". For example, "1" means 1,000 kg or lb, "5" means 5,000 kg or lb.

WARNING:

Do NOT attempt to set maximum capacity bigger than the scale's actual capacity. Overloading causes severe harm to the scale, and is very dangerous.

ZERO WEIGHT CALIBRATION

<u>Action</u>

When the screen displays $\boxed{ \Box R d D}$, keep the scale unloaded or with relatively zero weight.

After pressing HOLD button on scale or **I** on remote controller, the scale will detect current weight, displaying the below detection message.

ZERO WEIGHT CALIBRATION is finished when message **Lond** is displayed.

ONE LOAD CALIBRATION

<u>Action</u>

Put on the weight, when the screen displays **[______**]. After pressing HOLD button on scale or **[__**] on remote

controller, the scale displays the below message, waiting for user's input of the load's weight.

After pressing HOLD button on scale or **I** on remote controller, the scale will detect the load's weight, displaying the below detection message.

ONE LOAD CALIBRATION is finished when message LOAD CALIBRATION is finished when message is displayed. To finish the calibration, press 2ND button on scale or nemote controller.

Condition

- The load must be heavier than "0", (or "0.0" or "0.00", depending on the resolution). Otherwise, error message will flash.
- The load must not be heavier than the scale's maximum capacity. Otherwise, error message will flash.

NOTICE:

It is recommended to use the weight that is equal to scale's maximum capacity to calibrate the scale.

NOTICE:

In most cases, one load calibration is enough.

Calibrating the scale with more than one weight is usually required only when the scale's linearity performance is not desired.

Two Loads Calibration

Action

Put on the second weight, when the screen displays

After pressing HOLD button on scale or **on** remote controller , the scale displays the first load's weight, waiting for user's input of the second load's weight.

After pressing HOLD button on scale or **a** on remote controller, the scale will detect the second weight, displaying the below detection message.

TWO LOADS CALIBRATION is finished when message
is displayed. To finish the calibration, press 2ND button on scale or on remote controller.
Condition
✓ The second load must be heavier than the first load. Otherwise, error message _____ will flash.
✓ The second load must not be heavier than the scale's maximum capacity. Otherwise, error message _____ will flash.
NOTICE:

If the scale is calibrated with two loads, it is recommended to use the second weight that is equal to scale's maximum capacity to calibrate.

THREE LOADS CALIBRATION

Action

Put on the third weight, when the screen displays

After pressing HOLD button on scale or **I** on remote controller, the scale displays the second load's weight, waiting for user's input of the third load's weight.

After pressing HOLD button on scale or **o** on remote controller, the scale will detect the third weight, displaying the below detection message.

THREE LOADS CALIBRATION is finished when the below message is displayed. The scale will exit CALIBRATION MODE automatically and returns to WEIGHING MODE.

Condition

- \checkmark The third load must be heavier than the second load.
 - Otherwise, error message _____ will flash.
- The third load must not be heavier than the scale's maximum capacity. Otherwise, error message will flash.

NOTICE:

If the scale is calibrated with three loads, it is recommended to use the third weight that is equal to scale's maximum capacity to calibrate.

POWER ADJUSTMENT

<u>Action</u>

Before entering **POWER ADJUSTMENT MODE**, press 2ND button on scale or **r** on remote controller twice to enter the password interface first.

To input **POWER ADJUSTMENT** password or digits, press ZERO and TARE button on scale or **and on** remote controller.

To confirm the password or input value, press HOLD button on scale or **on** remote controller.

To save and exit **POWER ADJUSTMENT MODE**, press 2ND button on scale for **and exit on remote controller**.

To exit **POWER ADJUSTMENT MODE** without saving, press ON/OFF button on scale or 👩 on remote controller.

To learn how to input digits or change the option, please refer to 1 User Input section in User's Guide.

Function

System power needs to be adjusted, when the scale is reset manually. User can adjust the system voltage in **POWER ADJUSTMENT MODE**. The screen displays the welcome message as below.

After pressing HOLD button on scale or **I** on remote controller, the scale displays current system voltage (or 6.50V if the scale has been reset), waiting for user's input of new voltage.

After pressing HOLD button on scale or on remote controller, the scale saves the new voltage, and returns to **WEIGHING MODE**.

3. RS-232 Communication

The scale is equipped with a RS-232 serial input/output port, which is intended for interfacing scoreboards, desktop indicator, hand-held data collector, and computer, etc.

COMMUNICATION WAYS

There are optionally two ways of communication in between scales and peripherals, cabled way and wireless way. Through cable, peripherals can be connected to the scale's full duplex communication port (optional), while via wireless, peripherals can communicate with scale through its half-duplex wireless port (optional).

Cable connection distance is up to 15 meters. Plug one end of the 9-pin D-type connector into the RS-232 socket in the rear of scale. Plug another end of the connector to your peripherals that support RS-232 communication.

Wirelessly, scale works with peripherals over 500 meters, on condition that there is no block between them.

RS-232 PROTOCOL

The scale sends out data in the format of string. A string is consisted of 10 bytes, 1 byte of start flag, 1 byte of scale address, 5 bytes of LED data, 1 byte of indicator data, and 1 byte of check sum, showed as below:

Byte	ASCII	Default Value
flag of start	0x7F	0x7F
address of scale	user defined	0x00
data of LED1	according to display	according to display
data of LED2	according to display	according to display
data of LED3	according to display	according to display
data of LED4	according to display	according to display
data of LED5	according to display	according to display
data of indicator	according to display	according to display
check sum	according to all data	according to all data

Flag of start are always fixed to be 0x7F.

Scale address is defined at SCALE ADDRESS in

COMMUNICATION SETUP, default address is set to 00 (0x00 in hexadecimal).

ASCII	Dec	Hex	Display	ASCII	Dec	Hex	Display
'0'	48	0x30	0	'a'	97	0x61	R
'1'	49	0x31	{	'b'	98	0x62	Ь
'2'	50	0x32	2	'c'	99	0x63	Γ
'3'	51	0x33	3	'd'	100	0x64	ď
'4'	52	0x34	Ч	'e'	101	0x65	Ε
'5'	53	0x35	5	'f'	102	0x66	F
'6'	54	0x36	6	'g'	103	0x67	5
'7'	55	0x37	7	'h'	104	0x68	h
'8'	56	0x38	8	'i'	105	0x69	
'9'	57	0x39	9	'j'	106	0x6A	Ĺ
')'	41	0x29	0.	'k'	107	0x6B	Р
'!'	33	0x27	!	'1'	108	0x6C	L
'@'	64	0x40	2	'm'	109	0x6D	۱c
'#'	35	0x23	3	'n'	110	0x6E	C
'\$'	36	0x24	Ч <u></u>	'o'	111	0x6F	0
'%'	37	0x25	5.	'p'	112	0x70	Ρ
י^י	94	0x5E	6.	'q'	113	0x71	9
'&'	38	0x26	7.	'r'	114	0x72	ſ
'*'	42	0x2A	8.	's'	115	0x73	5
'('	40	0x28	9.	't'	116	0x74	F
• •	32	0x20		'u'	117	0x75	U
'*'	42	0x2A	8	'v'	118	0x76	L
'~'	126	0x7E		'w'	119	0x77	
'_'	45	0x2D	-	'x'	120	0x78	Н
'_'	95	0x5F	_	'y'	121	0x79	4
				'z'	122	0x7A	-

LED data is defined as below.

Data of indicator has two formats, depending on the PCB

version.

version 1		version 2	
bit	indicator	bit	indicator
bit 0	kg indicator	bit 0	not defined
bit 1	b indicator	bit 1	STB indicator
bit 2	ZERO indicator	bit 2	TARE indicator
bit 3	not defined	bit 3	ZERO indicator
bit 4	TARE indicator	bit 4	lb indicator
bit 5	HOLD indicator	bit 5	kg indicator
bit 6	STB indicator	bit 6	HOLD indicator
bit 7	not defined	bit 7	not defined

Check sum is the XOR sum of 7 bytes, 1 byte of Scale Address, 5 bytes of LED data and 1 byte of indicator data.

When **OUTPUT MODE** in **COMMUNICATION SETUP** is set to be "2", the scale is able to answer request with specified data. Request consists of 4 bytes, 1 byte of flag of start, 1 byte of address of scale, 1 byte of request command, and 1 byte of check sum, showed as below:

Byte	Hex
flag of start	0x1B
address of scale	user defined
request command	0xAB
she she surre	according to address of scale and
check sum	request command

Flag of start are always fixed to be 0x1B.

Scale address is defined at SCALE ADDRESS in

COMMUNICATION SETUP, default address is set to 00 (0x00 in hexadecimal).

Request command is currently fixed to be 0xAB.

Check sum is the XOR sum of 2 bytes, 1 byte of Scale Address, 1 byte of request command.

4. Message Illustration

Possible messages the scale displays are listed here.

SERLE	scale configuration	SCALE CONFIGURATION welcome message
RE 20	auto-zero range	AUTO-ZERO RANGE
n <u>-</u> 4	manual-zero range	MANUAL-ZERO RANGE
<u> </u>	zero-tracking range	ZERO-TRACKING RANGE
<u>69</u> .794	gravity acceleration	GRAVITY ACCELERATION welcome message
Elbrt	calibrat ion	CALIBRATION
FS 2	<mark>f</mark> ull <mark>s</mark> cale	MAXIMUM CAPACITY
LoAdD	load 0	ZERO WEIGHT CALIBRATION
LoAd I	load 1	ONE LOAD CALIBRATION
LoAd2	load 2	Two Loads Calibration
LoAd3	load 3	THREE LOADS CALIBRATION
End	end	Save and exit
U Rdj	power <mark>adj</mark> ustment	POWER ADJUSTMENT welcome message

5. NOTES